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Abstract

Finite size effects are studied for magnetoresistance in a disordered

metallic system. Quantum corrections to the conductivity are strongly

affected by the presence of an in-plane magnetic field in a thin film. They

are also affected significantly by the boundaries of the finite quantum

size. Expressions are obtained for the quantum correction to the

conductivity due to both effects. The dephasing characteristic time scale

due to the magnetic field is found by the exact eigenvalues of the system.

One-, two- and three-dimensional results can be obtained with the proper

limits. Some numerical results are presented for the given inelastic

scattering length.
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I. Intrdgution

The effect of a magnetic field on electronic states has been studied

extensively for disordered systems. 1-3 The predictions of the anomalous

magnetoresistance have been tested by several experiments 
on metal films

4

and semiconductor structures. 5 The resistance of thin films and wires has
3

been studied in the presence of a longitudinal magnetic field, which is

more effective than a field directed perpendicular to the film. In Ref. 3,

the dimensions of the system are very small compared to the magnetic length

because the magnetic field is treated as a small perturbation. Here

perturbation theory yields the dephasing characteristic time rH - 122/DW2

for a square film or a wire of rectangular cross section, where aH is the

magnetic length of a particle with charge 2e, D is the electon diffusion

coefficient, and W is the dimension of the system. Generally perturbation

theory can be used when the condition W << aH holds. But, it is not

appropriate to apply perturbation theory to the ground state, which is most

important for corrections to the conductivity. The reason is explained

later in this paper. Here we study the effect of the boundaries on the

eigenvalues of the maximally crossed diagram in a thin film or wire with the

longitudinal magnetic field by a numerical method. From the eigenvalues of

the maximally crossed diagram, we obtain analytical expressions for quantum

corrections to the conductivity of thin films and wires, which are given in

Eqs. (13) and (14), respectively. Quantum corrections to the conductivity

are calculated as a function of the normalized dimension (W/aH ) of the thin

film or wire. Since a wide range of the normalized dimension W/aH is used

in our calculations, the actual dimension W of the system can range from

... .... m w u a ulmlum m [ Immulm mmm~ii~mlmmn !
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very small values to values which are larger than the magnetic length. We

2 2
obtain the dephasing characteristic time rH - 24 afl/DW as different from

the result of the perturbation method in restricted geometries.

II. Theor

The quantum correction to the conductivity of non-interacting electrons

weakly scattered by rigid random impurities is

2
se

- -((&-0)Dr(r,r',w),()

where s is spin degeneracy, and r(r,r',w) is the vertex correction due to

the sum of all the maximally crossed diagrams. In the absence of the

magnetic field, the vertex part r(r,r ,w) is

r(r,r',c) - X 2 +i . (2)

q

This vertex part is strongly affected by the presence of an external

magnetic field, because the symmetries inherent to the system are broken by

the field. This has been studied in Ref. I in the coordinate representation

through the equation

D{-i Z-  A (r)}2 + ( (3)
ar• in
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where A(r) is the magnetic vector potential, and -iw is replaced by the

inelastic scattering time rI
. at finite temperature.

6

in

Now let us consider a thin film which has a thickness W under an in-

plane magnetic field H - (O,O,H0 ) - A. If we choose the Landau gauge A

- (0, xH%, 0), the solution of Eq. (3) can be written as

Jdq dq O-n,q (on,q (x
r(x,x') - 2"  ! X (4)

(27) 2 D(q 2+E (q)) + _L '
z n y in

where 0 n,q x) and E n(q ) are the eigenfunctions and eigenvalues,

respectively, of the equation

2 - (q - 2H 0 x)] (x) - En(q )0' (x) (5)
8x2 y XC 0 n,qy y nqy

within the film. The above equation can be written as

2

ax 2 n,q q x)- n (qy On,q y(x (6)

where is the magnetic length of a doubly-charged particle and x2

is related to the wavevector qy by the expression x0- HqY. Now if we

introduce the normalized coordinate - 2x/aH, Eq. (6) can be transformed

into the well-known Weber equation,

- " li l i i l l il i i mllmmli i i~i i • i -
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2 (Co)2 + (V+) - (7)at2 4+ ~

where t0 is related to the wavevector qy by to- TaHq We construct the

general solutions of Eq. (7) as

OVnpqy (t) - A DVn (C) + DD Vn (-0 ' (8)

where A and B are the normalization constants and D (z) is the Weber

function given by

D (z) 21/ exp(- &) Hrr 2' 2
11 4 2 r(-2 + ) 1F11-2; 112

-IL 1F1(-M+l ; 2' *-*12) (9)r(-m) 1-I2 2 2'

Here 1F1 (a;b;x) is the confluent hypergeometric function 8 and F(z) is the

gamma function. The eigenvalues are given by

E (q 2 +1 (10)n y 2Wn 2)
aH

III. Results and Discussion

Equation (7) yields the discrete spectrum of eigenvalues for each value

of the continuously varying wavevector qy. If there are no boundaries, both

-I



6

the eigenvalues and eigenvectors become identical to the solutions

describing the unrestricted motion of free particles in the magnetic field.

The eigenvalues of Eq. (7) can be determined if the precise form of the

confining potential is given. The results are shown in Fig. 1 for

normalized dimensions of the sample ./2W/a H- 1.0 with the boundaries of an

infinite confining potential barrier, given by

O n , q y ( ) Io( 
lax x 

(11
2

Since each mode in Fig. 1 shows parabolic-like behavior as a function of the

wavevector qy, we may write the eigenvalues in a parabolic approximation as

A 2
En(q M + Cq , (12)
n y a2 fly

where An is the y-intercept (qy-O) and Cn represents the coefficient of the

quadratic term in each mode.

For a thin film, when we substitute Eq. (12) into (4) and integrate

over qy and qz, we obtain

in e 2 2 ' (13)
IFC:
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where the elastic diffusion length 1el- rel is used for the upper limit of

the integration. The quantum corrections to the conductivity of rectangular

wires with transverse dimensions small in comparison with 2. can be
in

obtained in the same way and are given by

e2 A 1 ~1 el An/a)4A- - 2 ' tan" 2 (14)

n( n + 2 in +An/ H

in aH

Numerical results for magnetoconductivity in thin films and the

magnetoconductivity per unit length in rectangular wires are presented in

Figs. 2 and 3, respectively, for various values of the ratio W/1in. In each 6

graph we have used the unitless quantity - T/W/aH in the x-direction, and

the dimensions of the sample are normalized to the inelastic scattering

length Iin' Thus x-coordinates of the graphs are proportional to r0 for 0

the given sample size. The effect of a magnetic field becomes more

prominant on the quantum interference (weak localization) at small values of

W/1 in' that is, at small dimensions of the sample or at large values of

I (low temperature) for the given system.

The values A0 and C of the lowest-lying state (n-O), which is the
most important for quantum corrections to the conductivity, are given in

Table I for comparison with those in the absence of a magnetic field.
0

Without the magnetic field, E (q ) may be written in a similar form as
n y
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E0(qy - ) + qy 2 (15)

where n - 0, ±1, ±2, When the condition W << a. holds, Table I

2 2 4
shows A0/aH W / 2 4aid for the ground state, whereas perturbation theory

yields W2/12a4. As we can see clearly from Eq. (5) that perturbation theory

can not be applied for small values of qy= 0, which has the most significant

contributions to the corrections to the conductivity. Thus the

characteristic time scale must be rH- 24a1,/DW
2 in magnetoconductivity, which

is given by

2(H) - a(O) - e2+ ) (16)() 0 2r 2 r H

for a thin film, and the quantum corrections to the conductivity per unit

length are given by

2
Aa(H) _. e_ (17)

, Drin + FrH

for a wire of rectangular cross section.

If the other condition W >> aH holds, the eigenvalues are divided into

two parts: (I) the surface part, that is, those states whose orbit is

affected by one wall of the sample, and (2) the bulk orbits which are not

affected by the boundaries of the sample. The surface part always has an

almost constant contribution to the conductivity, whereas the bulk part is

proportional to the sample width W due to many degenerate states in each
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level. Thus, we can recover the results of the bulk limit given in Ref. 1

(cf. the values in Table I).

This research was supported by the Office of Naval Research and th6 Air

Force Office of Scientific Research (AFSC), United States Air Force, under

Contract No. F49620-86-C-0009. The United States Government is authorized

to reproduce and distribute eprints for governmental purposes

notwithstanding any copyright notation hereon.
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TABLE I. Eigenvalue shift (A0) and parabolic coefficient (C0 ) due to the

boundaries and the longitudinal magnetic field.

(W) 1.0 x 10.4  1.0 x 10.3  1.0 x 10.2  0.1 1

A0  4.167 x 10.9  4.167 x 10- 7  4.167 x 10' 5  4.167 x 10.3  4.165

C0 1.000 1.000 1.000 1.000 0.
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Figure Captions

1. The energy dispersion in a longitudinal magnetic field with dimensions

of the system M_ - 1.0 and infinite-barrier confining potential. Thea H

x-coordinate 0 is related to the wavevector qy by %(qy) - faHqy.

2
2. The magnetoconductivity (divided by the coefficient e__) of a thin film

22(

plotted against the unitless parameter (aH) - W (i) W/in - 0.05

(2) W/Iin - 0.2 and (3) W/Ain - 1.0 .

2e21.

3. The magnetoconductivity (divided by the coefficient 2--) per unit2

length of a rectangular wire plotted against the unitless parameter

(a) - -. (1) W/I. - 0.05 , (2) W/In - 0.2 and (3) W/in - 1.0

0

"0
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